首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1887925篇
  免费   185965篇
  国内免费   1639篇
  2021年   18299篇
  2018年   20576篇
  2017年   19307篇
  2016年   30180篇
  2015年   43692篇
  2014年   51964篇
  2013年   78102篇
  2012年   56587篇
  2011年   50213篇
  2010年   50680篇
  2009年   49905篇
  2008年   45408篇
  2007年   45277篇
  2006年   46203篇
  2005年   47406篇
  2004年   46111篇
  2003年   43380篇
  2002年   40931篇
  2001年   62454篇
  2000年   60630篇
  1999年   53008篇
  1998年   29132篇
  1997年   28904篇
  1996年   26491篇
  1995年   25946篇
  1994年   25607篇
  1993年   25131篇
  1992年   44960篇
  1991年   43483篇
  1990年   41941篇
  1989年   42154篇
  1988年   38756篇
  1987年   37332篇
  1986年   34911篇
  1985年   36313篇
  1984年   32830篇
  1983年   28932篇
  1982年   25846篇
  1981年   24411篇
  1980年   22870篇
  1979年   29844篇
  1978年   25533篇
  1977年   23902篇
  1976年   22964篇
  1975年   23666篇
  1974年   25277篇
  1973年   25307篇
  1972年   22223篇
  1971年   20339篇
  1970年   17765篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
Previously mutations in a putative protein O -mannosyltransferase (SCO3154, Pmt) and a polyprenol phosphate mannose synthase (SCO1423, Ppm1) were found to cause resistance to phage, φC31, in the antibiotic producing bacteria Streptomyces coelicolor A3(2). It was proposed that these two enzymes were part of a protein O-glycosylation pathway that was necessary for synthesis of the phage receptor. Here we provide the evidence that Pmt and Ppm1 are indeed both required for protein O-glycosylation. The phosphate binding protein PstS was found to be glycosylated with a trihexose in the S. coelicolor parent strain, J1929, but not in the pmt derivative, DT1025. Ppm1 was necessary for the transfer of mannose to endogenous polyprenol phosphate in membrane preparations of S. coelicolor . A mutation in ppm1 that conferred an E218V substitution in Ppm1 abolished mannose transfer and glycosylation of PstS. Mass spectrometry analysis of extracted lipids showed the presence of a glycosylated polyprenol phosphate (PP) containing nine repeated isoprenyl units (C45-PP). S. coelicolor membranes were also able to catalyse the transfer of mannose to peptides derived from PstS, indicating that these could be targets for Pmt in vivo .  相似文献   
992.
Data on the interaction of DNA type I topoisomerases from the murine and human placenta cells with specific and nonspecific oligonucleotides of various structures and lengths are summarized. The relative contributions of various contacts between the enzymes and DNA that have previously been detected by X-ray analysis to the total affinity of the topoisomerases for DNA substrates are estimated. Factors that determine the differences in the enzyme interactions with specific and nonspecific single- and double-stranded DNAs are revealed. The results of the X-ray analysis of human DNA topoisomerase I are interpreted taking into account data on the comprehensive thermodynamic and kinetic analysis of the enzyme interaction with the specific and nonspecific DNAs.  相似文献   
993.
To investigate the potential for and constraints on the evolution of compensatory ability, we performed a greenhouse experiment using Asclepias syriaca in which foliar damage and soil nutrient concentration were manipulated. Under low nutrient conditions, significant genetic variation was detected for allocation patterns and for compensatory ability. Furthermore, resource allocation to storage was positively, genetically correlated both with compensatory ability and biomass when damaged, the last two being positively, genetically correlated with each other. Thus, in the low nutrient environment, compensatory ability via resource allocation to storage provided greater biomass when damaged. A negative genetic correlation between compensatory ability and plant biomass when undamaged suggests that this mechanism entailed an allocation cost, which would constrain the evolution of greater compensatory ability when nutrients are limited. Under high nutrient conditions, neither compensatory ability nor allocation patterns predicted biomass when damaged, even though genetic variation in compensatory ability existed. Instead, plant biomass when undamaged predicted biomass when damaged. The differences in outcomes between the two nutrient treatments highlight the importance of considering the possible range of environmental conditions that a genotype may experience. Furthermore, traits that conferred compensatory ability did not necessarily contribute to biomass when damaged, demonstrating that it is critical to examine both compensatory ability and biomass when damaged to determine whether selection by herbivores can favor the evolution of increased compensation. Received: 2 April 1999 / Accepted: 21 September 1999  相似文献   
994.
In Drosophila, as in vertebrates, each muscle is a syncytium and arises from mesodermal cells by successive fusion. This requires cell-cell recognition, alignment, formation of prefusion complexes, followed by electron-dense plaques and membrane breakdown. Because muscle development in Drosophila is rapid and well-documented, it has been possible to identify several genes essential for fusion. Molecular analysis of two of these genes revealed the importance of cytoplasmic components. One of these, Myoblast city, is expressed in several tissues and is homologous to the mammalian protein DOCK180. Myoblast city is presumably involved in cell recognition and cell adhesion. Blown fuse, the second cytoplasmic component, is selectively expressed in the mesoderm and essential in order to proceed from the prefusion complex to electron-dense plaques at opposed membranes between adjacent myoblasts. The rolling stone gene is transiently expressed during myoblast fusion. The Rost protein is located in the membrane and thus might be a key component for cell recognition. The molecular characterization of further genes relevant for fusion such as singles bar and sticks and stones will help to elucidate the mechanism of myoblast fusion in Drosophila.  相似文献   
995.
We conducted two-dimensional (2D) discrete Fourier analyses of the spatial variation in refractive index of the spongy medullary keratin from four different colours of structurally coloured feather barbs from three species of bird: the rose-faced lovebird, Agapornis roseicollis (Psittacidae), the budgerigar, Melopsittacus undulatus (Psittacidae), and the Gouldian finch, Poephila guttata (Estrildidae). These results indicate that the spongy medullary keratin is a nanostructured tissue that functions as an array of coherent scatterers. The nanostructure of the medullary keratin is nearly uniform in all directions. The largest Fourier components of spatial variation in refractive index in the tissue are of the appropriate size to produce the observed colours by constructive interference alone. The peaks of the predicted reflectance spectra calculated from the 2D Fourier power spectra are congruent with the reflectance spectra measured by using microspectrophotometry. The alternative physical models for the production of these colours, the Rayleigh and Mie theories, hypothesize that medullary keratin is an incoherent array and that scattered waves are independent in phase. This assumption is falsified by the ring-like Fourier power spectra of these feathers, and the spacing of the scattering air vacuoles in the medullary keratin. Structural colours of avian feather barbs are produced by constructive interference of coherently scattered light waves from the optically heterogeneous matrix of keratin and air in the spongy medullary layer.  相似文献   
996.
997.
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号